Usted está aquí

La nueva ciencia del sueño: algunas ideas clave e implicaciones educativas

La idea básica es que el sueño sirve, básicamente, para restaurar el estado energético y la plasticidad neuronal cuando estamos despiertos.

Enero 7, 2020

El sueño es el precio que ha de pagar el cerebro para mantener su plasticidad. –Giulio Tononi

Los seres humanos pasamos una tercera parte de nuestra vida durmiendo, por lo que es difícil creer que la evolución haya permitido que el sueño no sirva para una función absolutamente vital. Y los seres humanos, curiosos por naturaleza, evolucionamos planteándonos preguntas e intentando dar respuestas a las mismas investigando de forma adecuada. En lo referente al sueño, algunas podrían ser las siguientes: ¿Por qué necesitamos dormir? ¿Cómo es posible que dediquemos tantas horas a una actividad pasiva, irrelevante en apariencia desde el punto de vista intelectual y que simplemente nos permite algo de descanso corporal? ¿No podríamos recuperarnos igual después de la actividad diurna durmiendo unas horas menos?

Lo cierto es que todavía no existen respuestas definitorias a todas las cuestiones planteadas, aunque la investigación neurocientífica en los últimos años nos está revelando información sugerente que nos puede ayudar a entender la razón del sueño. Y, efectivamente, en la actualidad sabemos que el sueño, además de permitirnos descansar y preparar el cuerpo para la vigilia, constituye una necesidad biológica, provocada activamente por nuestro cerebro, que tiene una gran incidencia en los sistema nervioso, inmunitario y endocrino, afectando todo ello a nuestra salud física, emocional y cognitiva.

Regeneración durante el sueño

Es lógico pensar, al igual que ocurre con cualquier máquina, que nuestro cerebro necesite un tiempo específico para realizar una especie de mantenimiento de su maquinaria molecular y celular y optimizar así su funcionamiento. Por ejemplo, se ha demostrado que durante el sueño se eliminan mejor las toxinas no deseadas que se han ido acumulando durante la actividad diurna y cuya acumulación puede afectar negativamente a nuestra salud mental o emocional (¿verdad que te has sentido alguna vez aturdido/a o irritable cuando no dormiste bien?). Cuando dormimos, el espacio entre neuronas se ensancha, lo que mejora la circulación del líquido cefalorraquídeo entre el encéfalo y la médula espinal (Xie et al., 2013). Ello facilita la eliminación de residuos (como las beta-amiloides, sustancias precursoras de las placas amiloides características de la enfermedad de Alzheimer) llevándolos al hígado para realizar la desintoxicación.

 

Dormimos para poder aprender

La actividad regeneradora del sueño está en consonancia con la llamada hipótesis de la homeostasis sináptica, que está respaldada por muchas evidencias empíricas (Tononi y Cirelli, 2019). La idea básica es que el sueño sirve, básicamente, para restaurar el estado energético y la plasticidad neuronal cuando estamos despiertos. La actividad durante la vigilia incrementaría el consumo energético de las neuronas potenciando sus sinapsis y el sueño serviría para restaurar la energía consumida por las neuronas manteniendo las conexiones adecuadas y reduciendo o eliminando las conexiones innecesarias (ver figura 1). Ello nos permitiría mantener un equilibrio a nivel cerebral evitando saturaciones, conservando energía para funcionar con normalidad el día siguiente, y seguir aprendiendo utilizando los mecanismos inherentes de la plasticidad neuronal.

 

Figura 1. Diagrama esquemático de la hipótesis de la homeostasis sináptica (Tononi y Cirelli, 2019)

 

Consolidando memorias

Cada vez que evocamos una memoria la fortalecemos porque reactivamos los circuitos neuronales que la albergan. Y eso es lo que parece que ocurre durante el sueño y que permite consolidar (formación de las memorias a largo plazo) lo aprendido durante la vigilia. En determinadas regiones del cerebro, como en el hipocampo o la corteza, se generan las mismas pautas de activación que se dieron para codificar la información durante el aprendizaje. Una analogía interesante de cómo el sueño potencia el aprendizaje sería la siguiente: “se vacía un buzón lleno de cartas (memoria temporal del hipocampo); las cartas clasificadas son depositadas en una carpeta (corteza cerebral) y, a continuación, se suceden el procesamiento y las respuestas a las cartas (durante fases específicas del sueño, especialmente la de ondas lentas)”.  Un mecanismo fisiológico que podría explicar la transferencia de información desde el hipocampo a la corteza y su integración en redes neuronales ya existentes (¡qué importantes son los conocimientos previos en el aprendizaje!; ver figura 2) serían unas descargas de ondas agudas (ripples) que se dan cuando se reactivan las neuronas del hipocampo durante el sueño (Klinzing et al., 2019).

 

Figura 2. Cuando en la corteza existen redes neuronales relacionadas con la información novedosa, ésta deja de depender del hipocampo y se integra rápidamente en los esquemas existentes (Klinzing et al., 2019)

 

¿Antes o después del aprendizaje?

Muchos estudios han demostrado la importancia del sueño cuando se produce después del aprendizaje, estabilizando e integrando las memorias en el proceso de consolidación. Además, sabemos que la memoria es selectiva y que el sueño es especialmente importante para consolidar esos conocimientos que creemos que son relevantes para nosotros o que tienen un significado especial. Por ejemplo, en una interesante investigación en la que los participantes debían aprender una serie de palabras, aquellos a los que avisaron de que debían recordarlas al día siguiente obtuvieron mejores resultados que el resto (Wilhem et al., 2011).

Pero el sueño también es importante cuando precede a la tarea de aprendizaje preparando al cerebro para codificar la información novedosa que nos llega a través de los estímulos sensoriales. Una siesta de pocos minutos puede producir ciertas mejoras en la memoria de estudiantes de cualquier etapa educativa aunque parece que los mejores resultados se obtienen con periodos de tiempo más prolongados. En un estudio reciente con universitarios, a un grupo de estudiantes se les permitió dormir una siesta de 1 hora en el intermedio de una sesión de aprendizaje de 5 horas, mientras que un segundo grupo siguió estudiando y un tercero hizo un parón. 30 minutos después del final de la sesión, los estudiantes que durmieron la siesta recordaban la información relevante igual de bien que los que siguieron estudiando y mucho mejor que los que hicieron el parón. Pero una semana más tarde, esta diferencia solo se mantuvo para los que durmieron la siesta (Cousins et al., 2019; ver figura 3).

 

Figura 3. Los estudiantes que durmieron la siesta (en verde) recordaron mejor la información que los que siguieron estudiando (en azul) y los que hicieron un parón (en rojo; Cousins et al., 2019)

 

Cambios epigenéticos

Nacemos con un número determinado de genes, pero nuestra forma de vivir puede condicionar cómo se expresan esos genes. Si nos adentramos en las profundidades genéticas de la célula, llegamos a los cromosomas. Y en sus extremos hay unas porciones de ADN recubiertas de una funda protectora a base de proteínas que constituyen los telómeros. Las investigaciones de los últimos años han demostrado que los telómeros son muy importantes porque se van acortando con cada división celular y contribuyen a determinar a qué velocidad envejecen y mueren tus células (Blackburn y Epel, 2018). La buena noticia es que los extremos de nuestros cromosomas pueden alargarse contribuyendo a ello muchos de nuestros hábitos cotidianos, entre ellos el sueño, tanto su duración, como calidad y ritmo. En concreto, se ha comprobado que no dormir las horas adecuadas (menos de 7) conlleva un acortamiento de la longitud de los telómeros en hombres de la tercera edad (ver figura 4), algo que también se ha identificado en niñas y niños de 9 años de edad (James et al., 2017).

 

Figura 4. Las personas de la tercera edad que duermen 5 o 6 horas tienen telómeros más cortos. Si duermen más de 7 horas, la longitud de los telómeros es parecida a la de los adultos más jóvenes (Cribbet et al., 2014)

 

¿Y cuántas horas necesitamos dormir?

Cuando los estudios sugieren unas necesidades de sueño de unas 7 u 8 horas se refieren a adultos sanos. En el caso de la infancia y la adolescencia las necesidades son mayores (ver figura 5). Sin olvidar que existe mucha variabilidad al respecto (por ejemplo, hay un pequeño porcentaje de personas que necesita únicamente 5 o 6 horas de sueño) y que esas necesidades se pueden ver afectadas por múltiples factores, sean genéticos o ambientales.

 

Figura 5. Recomendación de la American Academy of Sleep Medicine (Paruthi et al., 2016)

 

En cuanto a las necesidades particulares y la distribución de las horas de sueño, en la literatura científica se conoce como “alondras” a aquellas personas que madrugan más y son más productivas a primeras horas del día, mientras que los “búhos” somos personas que preferimos los horarios más tardíos y nos acostamos más tarde (como consecuencia de ello, nos cuesta más madrugar, lo cual no significa que seamos vagos). En la práctica, todos nos encontramos en un continuo entre esos dos extremos y aunque no existan evidencias de que un cronotipo sea más beneficioso que otro (también pueden cambiar) para la salud física o mental, lo que está claro es que pueden afectar a los horarios laborales o escolares. Y si ya sabíamos que en la etapa de infantil las necesidades de sueño son mayores, también el adolescente necesita dormir más que el adulto.

Búhos adolescentes

Nuestro reloj interno (ver video), el núcleo supraquiasmático del hipotálamo, hace que la glándula pineal del cerebro libere la hormona inductora del sueño llamada melatonina, que hace que nos sintamos soñolientos y cansados. Estas señales son enviadas como parte de un patrón muy predecible que se repite, aproximadamente, cada 24 horas, el ritmo circadiano, que determina el nivel de alerta y regula el sueño junto al mecanismo homeostático de sueño y vigilia que nos impulsa a dormir cuando existe necesidad. El ritmo y la intensidad de la liberación de melatonina son inversamente proporcional a luminosidad, es decir, a más luz, menos melatonina y menos sueño y, al contrario, a menos luz, más melatonina y más sueño. La actividad cíclica del núcleo supraquiasmático también regula la temperatura, incrementándose durante el día para luego disminuir durante la noche, lo cual facilitará el sueño.

 

Los ritmos circadianos no nos vienen preinstalados, aunque los bebés, ya a los pocos meses, se van acostumbrando a dormir más por la noche. Durante la adolescencia, se da un retraso en el ritmo circadiano (Crowley et al., 2018), o si se quiere, el adolescente se convierte en un “búho” que tiene necesidad de acostarse más tarde y dormir más. Aunque no están claras las razones por las que pasa lo comentado anteriormente (parece que existe una menor sensibilidad a la luz en la adolescencia que retrasaría la liberación de melatonina), lo que está claro es que la adolescencia constituye una atapa de grandes cambios cerebrales, también en lo referente a los patrones de sueño. De hecho, los estudios con electroencefalogramas revelan una reducción del 50 % de la fase de sueño de ondas lentas (básica para la consolidación de las memorias) y una reducción del 75 % de los picos de amplitud de las ondas delta en la fase NREM en la adolescencia (Giedd, 2009).

 

Incidencia sobre el rendimiento académico

Los metaanálisis revelan que la somnolencia diurna, la falta de sueño y la mala calidad del mismo conllevan un peor rendimiento académico en la infancia y la adolescencia (Dewald et al., 2010).

En lo referente a las funciones ejecutivas del cerebro, sabemos que la corteza prefrontal es muy sensible a la falta de sueño. Por ejemplo, la privación del sueño durante 24 horas conlleva una reducción en el metabolismo de la glucosa en esta región, junto a otras también básicas para un buen rendimiento cognitivo, que no se revierte completamente con una noche de sueño posterior (Satterfield y Killgore, 2019; ver figura 6).

 

Figura 6. Tras 24 horas sin dormir, se reduce el metabolismo de la glucosa en áreas como la corteza prefrontal o la cingulada posterior (Satterfield y Killgore, 2019)

También sabemos que el estrés perjudica el correcto funcionamiento de la corteza prefrontal y que puede ser generado por la falta de sueño. Por ejemplo, en el caso del TDAH (el cual está asociado a déficits en el funcionamiento ejecutivo), muchos adolescentes tienen problemas de sueño y un ritmo circadiano retrasado. Pues bien, se ha comprobado que existe una asociación bidireccional entre el sueño y la actividad física y que aquellos jóvenes que se ejercitan de forma moderada o vigorosa de forma diaria mejoran la cantidad y calidad de su sueño (Master et al., 2019), lo cual puede ser especialmente beneficioso para aquellos con TDAH. Y ello puede ayudar a combatir la obesidad o la diabetes tipo 2 que cada vez se dan más en la infancia y en la adolescencia.

Las tecnologías no ayudan

Evidentemente, ya existían unos déficits de sueño bastante generalizados en la población mundial antes de la irrupción de las pantallas digitales y nuestra correspondiente adicción. Pero ahora la tecnología supone un nuevo desafío para el sueño. Existen múltiples estudios que demuestran que la exposición a la luz artificial de teléfonos móviles, tabletas, ordenadores y similares, especialmente la de menor longitud de onda, como la luz azul que emiten las pantallas LED, puede inhibir la liberación normal de melatonina, retrasar el ritmo circadiano y perturbar el sueño. Por ejemplo, se comprobó que personas que leían en un libro electrónico antes de acostarse liberaban un 50 % menos de melatonina que aquellas que leían libros impresos en papel. Como consecuencia de ello, les costaba más dormirse, su sueño era menos completo conteniendo una menor fase REM y su estado de alerta por la mañana era peor (Chang et al., 2015; ver figura 7). No obstante, se requieren más investigaciones porque puede haber diferencias según el medio digital utilizado, asumiendo también que cada persona puede tener una diferente sensibilidad a la luz que afecte a su ritmo circadiano (Phillips et al., 2019).

 

Figura 6. Los que leen el ebook suprimen un porcentaje mayor de melatonina (ver derecha) y muestran un desfase en el ritmo circadiano (ver izquierda) respecto a los que leen el libro físico (Chang et al., 2015)

 

¿Y si comenzamos la jornada más tarde?

El retraso en el ritmo circadiano del adolescente se encuentra con un gran problema: el horario de inicio de la jornada escolar. Ya en el libro ‘Neuroeducación en el aula: de la teoría a la práctica’ analizamos estudios longitudinales que avalan retrasar el inicio de la jornada, aunque sabemos que esta medida topa con las necesidades laborables de las familias, e incluso con los horarios de las actividades extraescolares de los propios estudiantes. Pero en el 2019 disponemos de nuevas evidencias que confirman el impacto positivo de esta medida sobre la salud física, emocional y cognitiva del adolescente como consecuencia de la mejora de su sueño. Por ejemplo, en un estudio reciente se ha comprobado que retrasar 1 hora el inicio de la jornada escolar (de 7,30 a 8,30) de adolescentes de 15 años supone un desplazamiento en su ciclo del sueño (se acuestan y se levantan un poco más tarde) que puede conllevar una mayor duración del mismo y que puede llegar a superar la media hora (Nahmod et al., 2019). Y resultados muy parecidos se han encontrado en una investigación que ha analizado el impacto del retraso del inicio de la jornada en casi una hora (de 7,50 a 8,40), en las escuelas públicas de Seattle. En promedio, el incremento de sueño de los adolescentes ha sido de 34 minutos. Y junto a ello se ha identificado una mejora de la atención de los estudiantes en el aula y un incremento del 4,5 % en sus resultados académicos (Dunster et al., 2018; ver figura 8). La conclusión es clara, no se puede pedir a un adolescente que muestre un óptimo rendimiento cognitivo a primera hora de la mañana.

 

Figura 8. Mejora del sueño en el 2017 de adolescentes que empezaron más tarde la jornada escolar (en azul; Dunster et al., 2018)

 

¿Y entonces qué?

La investigación científica está revelando que no dormimos las horas necesarias y que ello repercute en nuestra salud a todos los niveles. A nivel educativo esto es muy relevante, porque la insuficiente cantidad y calidad del sueño de niños y adolescentes perjudica claramente su estado de ánimo y salud mental. En la infancia temprana, en concreto, el papel de las familias se ha demostrado que es fundamental estableciendo rutinas a la hora de acostarse, algo que es especialmente significativo en entornos socioeconómicos desfavorecidos (Covington et al., 2019).

Recientemente, Matthew Walker, uno de los neurocientíficos que está contribuyendo más a la ciencia del sueño, analiza en su último libro algunas ideas que nos pueden ayudar a mejorar el sueño (Walker, 2018). Recopilamos las más significativas que, por supuesto, también tienen implicaciones educativas que siempre hay que compartir con los estudiantes y las familias:

1. Mantén un horario estable de sueño, también los fines de semana.

2. Haz ejercicio físico, pero no en horarios tardíos.

3. Evita estimulantes, como la cafeína o la nicotina, y bebidas alcohólicas o comidas copiosas antes de acostarte.

4. No duermas siestas o en horario tardío si tienes problemas de sueño.

5. Establece una rutina relajante antes de acostarte que esté alejada de lo que te provoque estrés o un estado de alerta (leer en formato físico o meditar, por ejemplo).

6. Ten una habitación confortable: cama cómoda, baja iluminación, poco ruido, temperatura fresca (un poco más de 18 ºC, como máximo; por eso un baño caliente antes de dormir ayuda a mantener la temperatura corporal más baja). Y las pantallas mejor alejadas.

7. Aprovecha la luz natural diurna (es clave para regular los patrones de sueño). Y evita la luz brillante por la noche.

8. Y si no puedes dormir, no estés despierta/o un tiempo prolongado en la cama. Levántate y realiza una actividad relajante hasta que tengas sueño.

 

Seguimos viviendo, creciendo y, por supuesto, durmiendo y soñando. Una dulce necesidad cerebral.

Referencias:

1. Blackburn E. y Epel E. (2018). La solución de los telómeros: Aprende a vivir sano y feliz. DeBolsillo.

2. Chang A. M. et al. (2015). Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. PNAS 112, 1232–1237.

3. Cousins, J. N. et al. (2019). The long-term memory benefits of a daytime nap compared to cramming. Sleep 42 (1), 1-7.

4. Covington L. B. et al. (2019). Toddler bedtime routines and associations with nighttime sleep duration, and maternal and household factors. J Clin Sleep Med. 15(6), 865-871.

5. Cribbet M. R. et al. (2014). Cellular aging and restorative processes: subjective sleep quality and duration moderate the association between age and telomere length in a sample of middle-aged and older adults. Sleep 37, 65-70.

6. Crowley S. et al. (2018). An update on adolescent sleep: New evidence informing the perfect storm model. Journal of adolescence 67, 55-65.

7. Dewald J. F. et al. (2010). The influence of sleep quality, sleep duration and sleepiness on school performance in children and adolescents: a meta-analytic review. Sleep Med Rev. 14 (3), 179-189.

8. Dunster G. (2018). Sleepmore in Seattle: Later school start times are associated with more sleep and better performance in high school students. Science Advances 4, 1-7.

9. Giedd J. N. (2009). Linking adolescent sleep, brain maturation, and behavior. Journal of Adolescent Health 45(4), 319-320.

10. James S. et al. (2017). Sleep duration and telomere length in children. J Pediatr 187, 247-252.

11. Klinzing J. G. et al. (2019). Mechanisms of systems memory consolidation during sleep. Nature Neuroscience:  https://www.nature.com/articles/s41593-019-0467-3

12. Master L. et al. (2019). Bidirectional, daily temporal associations between sleep and physical activity in adolescents. Scientific Reports 9 (7732), 1-14.

13. Nahmod, N. G. et al. (2019). Later high school start times associated with longer actigraphic sleep duration in adolescents. Sleep 42 (2), 1-10.

14. Paruthi S. et al. (2016). Recommended amount of sleep for pediatric populations: a consensus statement of the American Academy of Sleep Medicine. J Clin Sleep Med 12(6), 785-786.

15. Phillips A. et al. (2019). High sensitivity and interindividual variability in the response of the human circadian system to evening light. PNAS 116 (24), 12019-12024.

16. Satterfield B., Killgore W. (2019). Sleep loss, executive function, and decision-making. En Sleep and Health (Grandner ed.), Academic Press.

17. Tononi G., Cirelli C. (2019). Sleep and synaptic down‐selection. European Journal of Neuroscience. Jan 5.

18. Walker M. (2018). Why we sleep. The new science of sleep and dreams. Penguin Books.

19. Wilhelm I. et al. (2011). Sleep selectively enhances memory expected to be of future relevance. The Journal of Neuroscience 31(5), 1563-1569.

20. Xie L. et al. (2013). Sleep drives metabolite clearance from the adult brain. Science 342, 373-377.

 

Contenido publicado originalmente en el blog Escuela con cerebro. Su reproducción se realiza con autorización del autor.

 


Foto de Mujer creado por freepik - www.freepik.es

Boletín de noticias
Registre su correo electrónico para recibir nuestras noticias.
Escrito por
Profesor del posgrado de neuroeducación de la Universidad de Barcelona
No hay votos aun
Estadísticas: .
Luis Fernando Burgos
Gran Maestro Premio Compartir 2001
Revivo los mitos y leyendas para invitar a los duendes a guiar procesos de investigación.